逐渐从科幻小说中走出来的人工智能还离我们有多远-焦点中国网

人工智能从1956年的达特茅斯会议开始,到现在61年的历史,发展过程中风风雨雨,可以看到几起几落,至少我们经历过两个所谓人工智能的冬天。

1956年,达特矛斯会议标志着AI诞生了。达特茅斯会议之后的十几年是人工智能的黄金年代。在这段时间内,计算机被用来解决代数应用题、证明几何定理、学**和使用英语,这些成果在得到广泛赞赏的同时也让研究者们对开发出完全智能的机器信心倍增。当时,人工智能研究者们甚至认为:“二十年内,机器将能完**能做到的一切工作”、“在三到八年的时间里我们将得到一台具有人类平均智能的机器”。

1957年,神经网络Perceptron被罗森布拉特发明。

1970年,受限于计算能力,进入第一个寒冬。由于人工智能研究者们对项目难度评估不足,这除了导致承诺无法兑现外,还让人们当初的乐观期望遭到严重打击。到了 70 年代,人工智能开始遭遇批评,研究经费也被转移到那些目标明确的特定项目上。在当时,由于计算机性能的瓶颈、计算复杂性的指数级增长、数据量缺失等问题,一些难题看上去好像完全找不到答案。比如像今天已经比较常见的机器视觉功能在当时就不可能找到一个足够大的数据库来支撑程序去学**,机器无法吸收足够的数据量自然也就谈不上视觉方面的智能化。

1980年,XCON专家系统出现,每年节约4000万美元。卡内基·梅隆大学为数字设备公司设计了一个名为 XCON 的专家系统,这套系统在 1986 年之前能为公司每年节省四千万美元。有了商业模式,相关产业自然应运而生,比如 Symbolics、Lisp Machines 等硬件公司和 IntelliCorp、Aion 等软件公司。这个时期,仅专家系统产业的价值就有 5 亿美元。

1990-1991年,人工智能计算DARPA没能实现,政府投入缩减,进入第二次低谷。持续 7 年左右的人工智能繁荣很快就接近了尾声。到 1987 年时,苹果和 IBM 生产的台式机性能都超过了 Symbolics 等厂商生产的通用型计算机,专家系统自然风光不再。到 80 年代晚期,DARPA 的新任领导认为人工智能并不是“下一个浪潮”;1991 年,人们发现日本人设定的“第五代工程”也没能实现。这些事实情况让人们从对“专家系统”的狂热追捧中一步步走向失望。人工智能研究再次遭遇经费危机。

1997年,IBM的Deep Blue战胜国际象棋冠军。

2006年,Hinton提出“深度学习”的神经网络

2011年,苹果Siri问世,技术上不断创新。Siri可以令iPhone4S及以上手机(iPad 3以上平板)变身为一台智能化机器人,利用Siri用户可以通过手机读短信、介绍餐厅、询问天气、语音设置闹钟等。Siri可以支持自然语言输入,并且可以调用系统自带的天气预报、日程安排、搜索资料等应用,还能

2012年,Google的无人驾驶汽车上路

2013年,深度学习算法在语音和视觉识别上有重大突破,识别率超过99%和95%。

2016年,Deepmind团队的AlphaGo运用深度学习算法战胜围棋冠军李世石。

2017年,AlphaGo再度战胜围棋冠军柯洁后宣布退役。

逐渐从科幻小说中走出来的人工智能还离我们有多远-焦点中国网

每一次人工智能的崛起都是因为某种先进的技术发明,而每一次人工智能遇到了它的瓶颈,也都是因为人们对于人工智能技术的期望太高,超出了它技术能达到的水准。所以政府、基金会等撤资,导致了研究人员没有足够的资金去从事研究。

随着人工智能在语音,图像以及自然语言上的突破,人工智能又进入了下一个春天。在未来人工智能在计算机视觉上应更加注重效果的优化,加强计算机视觉在不同场景、问题上的应用。

在语音场景下,当前的语音识别虽然在特定的场景(安静的环境)下,已经能够得到和人类相似的水平。但在噪音情景下仍有挑战,如原场识别、口语、方言等长尾内容。未来需增强计算能力、提高数据量和提升算法等来解决这个问题。

在自然语言处理中,机器的优势在于拥有更多的记忆能力,但却欠缺语意理解能力,包括对口语不规范的用语识别和认知等。人说话时,是与物理事件学相联系的,比如一个人说电脑,人知道这个电脑意味着什么,或者它是能够干些什么,而在自然语言里,它仅仅将"电脑"作为一个孤立的词,不会去产生类似的联想,自然语言的联想只是通过在文本上和其他所共现的一些词的联想, 并不是物理事件里的联想。所以如果要真的解决自然语言的问题,将来需要去建立从文本到物理事件的一个映射,但目前仍没有很好的解决方法。因此,这是未来着重考虑的一个研究方向。

当下的决策规划系统存在两个问题,第一是不通用,即学习知识的不可迁移性,如用一个方法学了下围棋,不能直接将该方法转移到下象棋中,第二是大量模拟数据。所以它有两个目标,一个是算法的提升,如何解决数据稀少或怎么自动能够产生模拟数据的问题,另一个是自适应能力,当数据产生变化的时候,它能够去适应变化,而不是能力有所下降。所有一系列这些问题,都是人工智能的突破口。