
反欺诈成为信用风险防范的主战场
依据几家互联网金融公司的数据,在统计的信用风险损失事件中,恶意欺诈占了60%的比例。恶意欺诈防控成了所有互联网金融公司的主要风险管理任务。市场上常用的防范恶意欺诈的方式有三种
第一种是利用黑名单机制,来拒绝一些恶意欺诈人获得贷款。但是道高一尺,魔高一丈,黑名单共享机制时效性越来越差,并且恶意欺诈的人频繁使用其他人信息进行欺诈,黑名单机制在一定程度上很难帮到金融企业预防欺诈。并且很多平台不太愿意共享自己的黑名单,因为黑名单在一定程度反映贷款平台风控管理水平,过多的黑名单会影响平台的声誉,甚至影响平台融资。另外黑名单覆盖率较低也是一个挑战,目前领先的反欺诈企业,其黑名单覆盖率也不超过30%。
第二种是利用共享贷款数据机制,第三方企业或者大的P2P,防欺诈联盟共享贷款平台的贷款记录。其他贷款平台可以依据申请人在其他平台的贷款记录来决定是否提供贷款,降低欺诈风险。这种方式效果比较好,但是对于最先受理恶意欺诈的贷款平台是无效的,原因是没有其他平台的贷款记录,无法识别出贷款者是否属于恶意欺诈。
第三种是借助于平台自己的风控模型,依据坏种子归纳出来的规律,识别出恶意欺诈申请者。这种方式正在成为主流,其中基本采用信息验证,特征匹配,行为分析等方式来识别出贷款用户是否属于恶意欺诈用户。常见的方式有验证用户的工作地点,生活区域,查看手机应用安装,社交活动轨迹,设备聚集点,是否经常换手机卡,是否刻意隐藏个人信息,是否短期内故意暴露个人信息等方式。企业利用风险评分卡来对用户进行评估,依据评分结果来决定是否贷款给客户。
移动大数据可以帮助金融企业防范恶意欺诈,例如可以通过手机的位置信息来验证申请人的居住地和工作地;依据App安装列表来验证用户是否在活跃在多家借款平台;依据数据识别用户是否在几天内不停更换手机卡;依据手机App装载和使用情况来辨识用户是否安装了很多恶意软件例如密码破解器,伪装号码软件;客户是否仅仅使用贷款软件,没有安装常用软件。借助于移动大数据和用户行为信息,金融企业可以识别恶意欺诈用户。国内领先的移动大数据服务商TalkingData,正在为互联网金融公司提供移动大数据来防范用户的恶意欺诈,数据的查得率超过了50%左右,具有成熟的数据商业应用场景。
Zest Finance 如何利用大数据实施风险控制
市场上最热的大数据风控公司就是美国的ZestFinance。其技术来源于Google,正在为15%左右的美国客户提供信用评估服务,并且也服务很多传统金融企业,共有400万美国人直接通过ZestFinance申请信用评分,另外在银行等金融机构通过ZestFinance模型获得信用背书的人数则远远大于该数。
ZestFinance公司的CEO介绍了他们公司在大数据风控领域的经验,很值得传统企业借鉴。欧美传统银行通常采用对所有人都适用的线性回归模型,其中包含性别、出生地等20个左右变量,对每个人都简单化处理,以打分卡的形式评分ZestFinance采用的变量则多达70000个,采用的算法也不是线性回归模型,而是来自Google的大数据模型。
FICO信用评分参考的数据变量只有不到50个,很多人摸清了FICO关注的变量后,就可以“模型套利”增加自己的信用评分,例如一个人可以每天反复在图书馆借书还书“刷信用”
银行往往采用200个一下变量和几个模型,从模型数量而言,传统征信评分通常采用一个模型,ZestFinance采用十个模型,从不同角度进行计算。十个模型从不同角度衡量申请人的分数,其中两个是进行身份验证防欺诈的,一个是预测提前还款概率的,其余都是评判还款意愿和能力的。最后会用一个决策模型将十个模型的结果整合在一起,得到最终的结果。
Zest Finance发现模型越多,准确率越高。有两个模型,对利润的提升分别是16.9%和9.4%,可能第二个模型往往会被弃用。但如果把这两个模型放在一起使用,利润会提升了38.3%。每个模型平均半年就会诞生一个新版本,替代旧的版本。新版本通常会加入更多的变量和数据源。每个新版本模型都以开发者的名字命名,从而纪念付出劳动与智慧的工程师。
ZestFinance模型中大部分信号都是通过机器学习找到的。例如,一个人在网上填表喜欢用大写还是小写就是一个信号。ZestFinance模型发现,填表喜欢全部用大写字母的人违约率更高。在月收入经过验证的情况下(ZestFinance有一些渠道可以大概获知一个人的收入状况),收入越高,违约率越低。然而,在月收入没有经过验证的情况下,自己填写月收入7500美元的人违约率是最低的,填写7500美元以上则数字越大违约率就更高。
很多人将社交数据视为神器,但是ZestFinance 不这么认为,主要还是采用结构化和类结构化的数据,例如交易信息、法律记录、租赁信息等,来源主要是从数据代理商处购买。
ZestFinance的先进之处并非数据来源,“我们有的数据银行都有”,区别在于,银行的人有数据却不会用,就好比坐拥大量矿藏却不会冶炼。相反,ZestFinance最大的优势就是“数据冶炼”,同样的数据到了ZestFiance手中,就可以碰撞产生无数有价值的信号